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     -  ,  With the assumption of a flat space metric k = 0 ,     -the Robertson Walker 

    :    field equations have the form 4G
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         ,  The Friedman solution assumes negligible pressure and no cosmologic constant so 

  :                  the equations yield R ' 2=
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  .              , :  of the universe If there is no pressure then we may say this is constant or
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           :On the other hand DeSitter solved the field equations assuming the state  
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     :  The metric is simply expressed as R = R0e
H t 
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     -      Originally people thought that both mass energy and pressure had to be 

  ,       -    positive or zero but cosmologic expansion of a non empty space cannot be 

  .  accommodated this way           I propose the vacuum presents a field of negative energy but 
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  .        -     positive pressure This is in harmony with a late stage expansion where the Hubble 

    -        .constant of the expanding mass energy of the Friedman solution has become small  

   This energy I call ,  adiabatic  or A ,         as opposed to the residual vacuum energy 

    .   :          posited as a negative constant Thus  = A−  ,            :and we see pressure as
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            We must be careful now to distinguish between the vacuum contribution and the 

 .              adiabatic part The conservation of total mass still holds true with respect to the 

.       latter Indeed we must assume A    ,     gets asymptotically small for then the regime 

     .       :of the DeSitter metric is appropriate The first equation becomes now
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.            The last term contains the 

   square of H0 ,            so this is the equation constraining the relationship of the three 

,   ,   ,   -  constants vacuum pressure cosmologic constant and late expansion Hubble 

.  constant


